Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A.
نویسندگان
چکیده
Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens.
منابع مشابه
Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection.
Salmonella enterica serovar Typhimurium invasion genes are necessary for bacterial invasion of intestinal epithelial cells and are thought to allow salmonellae to enter and cross the intestinal epithelium during infection. Many invasion genes are encoded on Salmonella pathogenicity island 1 (SPI1), and their expression is activated by HilA, a transcription factor also encoded on SPI1. We have s...
متن کاملRepression of intracellular virulence factors in Salmonella by the Hha and YdgT nucleoid-associated proteins.
The Hha/YmoA family of nucleoid-associated proteins is involved in gene regulation in enterobacteria. In Salmonella enterica serovar Typhimurium, virulence genes required for intracellular growth are induced following host cell invasion but the proteins responsible for repressing these genes prior to host cell entry have not been fully identified. We demonstrate here that Hha is the major repre...
متن کاملThe Small RNA DsrA Influences the Acid Tolerance Response and Virulence of Salmonella enterica Serovar Typhimurium
The Gram-negative, enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to various stress conditions during pathogenesis, of which acid stress serves as a major defense mechanism in the host. Such environments are encountered in the stomach and Salmonella containing vacuole of phagocytic and non-phagocytic cells. It is only recently that small RNAs (sRNAs) have com...
متن کاملMapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion
UNLABELLED Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SP...
متن کاملEffect of iacP mutation on flagellar phase variation in Salmonella enterica serovar typhimurium strain UK-1.
Flagella are surface appendages that are important for bacterial motility and invasion of host cells. Two flagellin subunits in Salmonella enterica serovar Typhimurium, FliC and FljB, are alternatively expressed by a site-specific DNA inversion mechanism called flagellar phase variation. Although this inversion mechanism is understood at the molecular level, the key factor controlling the expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 83 9 شماره
صفحات -
تاریخ انتشار 2015